POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Processing of elastomeric materials

Course

Field of study Year/Semester

Materials Engineering 3/6

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

First-cycle studies polish

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 15

Tutorials Projects/seminars

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Dr. Habil. Eng. Karol Bula

e-mail: karol.bula@put.poznan.pl

phone; +48 61 665 - 2895

Faculty of Mechanical Engineering

Piotrowo 3, 60-965 Poznan

Prerequisites

Basic knowledge of the polymer materials including cross-linked and uncured elastomers. Application of information taken from the literature survey concerning science and technical profile including materials science. Understanding of necessity of taking new information and knowledge

Course objective

Student should obtain knowledge about preparation, processing and post processing finishing of the of cross-linked elastomers and uncured

Course-related learning outcomes

Knowledge

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 1. Students have knowledge about the investigation method for obtaining technological properties of elastomers .- [K_W010, K_W014].
- 2. Students have particular information concerning methods for processing and recycling of cross-linked elastomers as well as of uncured elastomers. [K W012, K W016].

Skills

- 1. Students are able to take the detailed information from literature survey and give the short description of materials and their processing. [K U01].
- 2. Students are well prepared to work with selected scientific equipment for polymer testing. [K_U08]
- 3. Students are ready for application of an appropriate processing techniques fo material shaping, with predefined internal structure and properties. [K U21].

Social competences

- 1. Studens are aware about the role of engineering elastomers in macro-scale economy and the influence of engineering activity on the environment. [K_K02].
- 2. Students are ready for cooperation in workgroup. [K_K03].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture

Written colloquium at the end of the semester, contains 5 to 6 questions (credit if at least 50.1% of correct answers are obtained). Up to 50.0% - ndst, from 50.1% to 60.0% - dst, from 60.1% to 70.0% - dst +, from 70.1% to 80.0% - db, from 80, 1% to 90.0% - db +, from 90.1% - very good.

Laboratory: every single training should be passed by giving the written answer and additional final report on a training

Programme content

Lecture:

- 1. Material science concerning rubber and fillers for rubber
- 2. Main components of rubber recipe
- 3. Selected methods for preparation of rubber mixture, technological properties of rubber mixture
- 4. Methods of continues and periodic vulcanization, assembly of tires
- 5. Methods for testing of cross-linked rubber and parts made of rubber
- 6. Material science and processing of thermoplastic elastomers, silicone and plasticized PVC
- 7. Recovery of tires, recycling of rubber products

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Laboratory:

- 1. Processing of rubber mixture
- 2. Processing of highly-filled rubber, processing of rubber with addition of recycled scrap
- 3. Rubber vulcanization with monitoring the mold and part temperature
- 4. Rubber vulcanization of product differ with their thickness
- 5. Investigation of rubber properties, evaluation of cross-linking density
- 6. Determination of dynamic properties of rubber

Teaching methods

- 1. Lecture: multimedia presentation.
- 2. Laboratory exercises: performing exercises, discussion, team work.

Bibliography

Basic

- 1. Guma, Poradnik inżyniera i technika, Praca zbiorowa, WNT W-wa, 1981
- 2. Poradnik technologa gumy, IPG ?Stomil? Piastów 2003
- 3. B. Jurkowski, B. Jurkowska, Sporządzanie kompozycji polimerowych. Elementy teorii i praktyki. WNT, W-wa 1995.

Additional

1. Smorawiński A., Wtrysk elastomerów, Wyd. Plastech, W-wa 2001.

Breakdown of average student's workload

	Hours	ECTS
Total workload	57	2,0
Classes requiring direct contact with the teacher	32	1,0
Student's own work (literature studies, preparation for laboratory	25	1,0
classes/tutorials, preparation for tests/exam, project preparation) ¹		

3

¹ delete or add other activities as appropriate